\(x + y +z = 21, x \ge1, y \ge 3, z\ge 4\)
⇒ \((x - 1) + (y - 3) + (z-4) = 21 - 8 = 13\)
⇒ \(\alpha + \beta + \gamma = 13, \alpha \ge 0, \beta \ge 0, \gamma \ge 0\)
where \(\alpha = x-1, \beta = y - 3\text{ & } \gamma = z - 4\)
\(\therefore \) No. of integral solution = \(^{n+r-1}C_{r-1}\)
where n = 13, r = number of variables = 3
\(\therefore \) No. of integral solution = \(^{13 +3 -1}C_{3 -1} =\, ^{15}C_2\)
\(= \frac{15 \times 14}{2} \)
\(= 105\)