\(^mC_1,^mC_2,^mC_3\) are first, third and fifth term of AP

\(\because\) m = 2, is not possible
\(\therefore \) m = 7
\(T_6 =\,^mC_5 (10-3^x)^{\frac {m-5}{2}}.(3^{x-2}) = 21\)
Putting value of m = 7, we get
\(T _{5+1} = \,^7 C_5(10-3^x)^{\frac {7-5}{2}}3^{x-2} = 21\)
⇒ \(\frac {10.3^x -(3^x)^2}{3^2}=1\)
⇒ \((3^x)^2 -10 .3^x +9 = 0\)
⇒ 3x = 9,1
⇒ x = 0,2
Sum of squares of values of x = 02 + 22 = 4