Correct option is (4) 5/6

C1 = 4πε0R
C2 = 4πε02R
Common potential
\(=\frac{c_1v_1+c_2v_2}{c_1+c_2}\)
\(=\frac{c_1+θ_2}{c_1+c_2}\)
\(=\frac{4\pi R^2σ+4\pi (2R)^2σ}{4\piε_0R+4\piε_0(2R)}\)
\(=\frac{5σR}{3ε_0}\)
So new charge on bigger sphere
θ = c2v
\(=4\piε_0(2R)\times\frac{5σR}{3ε_0}\)
\(θ_2=\frac{40\pi R^2σ}{3}\)
New charge density on bigger one = \(\frac{40\pi R^2σ}{\frac{3}{A_2}}\)
\(σ^1=\frac{4\pi R^2σ}{3}\times\frac{1}{4\pi}(2R)^2\)
\(σ^1=\frac{5}{6}σ\)
\(\frac{σ^1}{σ}=\frac{5}{6}\)