The correct option is (D) II.
Explanation:
En = [(– 13.6z2) / n2] eV for simplicity put + 13.6z2 = constant = k.
Hence En = [(– k) / n2] eV
Hence E1 = [(– k) / 1], E2 = [(– k) / 4], E4 = [(– k) / (16)], E3 = [(– k) / 9]
Now E2 – E1 = [(– k) / 4] + (k / 1) = (3k / 4) ........(1)
E4 – E2 = [(– k) / (16)] + (k / 4) = (3k / 16) .........(2)
E4 – E3 = [(– k) / (16)] + (k / 9) = [(7k) / (144)] ...........(3)
Hence (E2 – E1) > (E4 – E2) > (E4 – E3) hence photon with most energy occurs in II i.e. transition from n = 2 to n = 1.