The correct option (B) [q/(2π∈0)] [(1/R) – {1/√(R2 + d2)}]
Explanation:

from given data, diagram can be drawn as shown.
VA = Potential due to charge + q on ring A + potential due to – q on ring B
∴ VA = k[(q/R) + {(– a)/d1}] & d1 = √(R2 + d2)
∴ VA = [q/(4π∈0)] [(1/R) – {1/√(R2 + d2)}] (1)
similarly VB = [q/(4π∈0)] [{(– 1) / R} + {1/√(R2 + d2)}] (2)
Potential difference = VA – VB
∴ from (1) & (2), [q/(4π∈0)] [(1/R) – {1/√(R2 + d2)} + (1/R) – {1/√(R2 + d2)}]
= [2q/(4π∈0)] [(1/R) – {1/√(R2 + d2)}]
= [q/(2π∈0)] [(1/R) – {1/√(R2 + d2)}]