Correct option is (D) tan2θ − sec2θ = 1
(A) sinθ cotθ = cosθ
\(\frac 1{\sqrt 2} \times 1 = \frac 1{\sqrt 2}\)
\(\frac 1{\sqrt 2} = \frac 1{\sqrt 2}\)
(B) cosθ tanθ = sinθ
\(\frac 1{\sqrt 2} \times 1 = \frac 1{\sqrt 2}\)
\(\frac 1{\sqrt 2} = \frac 1{\sqrt 2}\)
(C) cosec2θ − cot2θ = 1
\((\sqrt{2})^2 - 1^2 = 1\)
\(2 - 1 = 1\)
\(1 = 1\)
(D) tan2θ − sec2θ = 1
\(1 - (\sqrt 2)^2 = 1\)
\(1 - 2 = 1\)
\(-1 = 1\)