x + y + z = 12
2x + 3y + 3z = 33
x – 2y + z = 0
\(\begin{bmatrix}1&1&1\\2&3&3\\1&-2&1\end{bmatrix}\)\(\begin{bmatrix}x\\y\\z\end{bmatrix}\) = \(\begin{bmatrix}12\\33\\0\end{bmatrix}\)
|A| = 3 ≠ 0
adjA = \(\begin{bmatrix}9&-3&0\\1&0&-1\\-7&3&1\end{bmatrix}\)
X = A-1B ⇒ \(\begin{bmatrix}x\\y\\z\end{bmatrix}\) = \(\frac{1}{3}\)\(\begin{bmatrix}9&-3&0\\1&0&-1\\-7&3&1\end{bmatrix}\)\(\begin{bmatrix}12\\33\\0\end{bmatrix}\)
X = A-1B ⇒ \(\begin{bmatrix}x\\y\\z\end{bmatrix}\) = \(\frac{1}{3}\) \(\begin{bmatrix}108-99+0\\12+0-0\\-84+99+0\end{bmatrix}\)
= \(\frac{1}{3}\)\(\begin{bmatrix}9\\12\\15\end{bmatrix}\)
= \(\begin{bmatrix}3\\4\\5\end{bmatrix}\)
Hence x = 3 , y = 4, z = 5