Let y = y(x), y > 0, be a solution curve of the differential equation (1 + x2) dy = y (x – y) dx. If y (0) = 1 and y(2√2) , = b then
(1) \(e^{3\beta^{-1}}=e(3+2\sqrt{2})\)
(2) \(e^{\beta^{-1}}=e^{-2}(5+\sqrt{2})\)
(3) \(e^{\beta^{-1}}=e^{-2}(3+2\sqrt{2})\)
(4) \(e^{3\beta^{-1}}=e(5+\sqrt{2})\)