Correct option is (c) q = (x2 + 19x - 5), r = 0
As given (5x2 + 14x + 2)2 − (4x2 − 5x + 7)2 is divided by x2 + x + 1
= ((5x2 + 14x − 5) − (4x2 − 5x + 7))((5x2 + 14x + 2) + (4x2 − 5x + 7))
= (5x2 + 14x + 2 − 4x2 + 5x − 7)(5x2 + 14x + 2 + 4x2 − 5x + 7)
= (x2 + 19x − 5)(9x2 + 9x + 9)
= (x2 + 19x − 5)9(x2 + x + 1)
Now dividing by x2 + x + 1
\(= \frac{(x^2 + 19x -5)9(x^2 + x + 1)}{x^2 + x + 1}\)
Quotient = 9(x2 + 19x − 5) and Reminder = 0