Correct option is (B) 4
Suppose the man fires n times and let X denote the number of times he hits the target. Then,
\(P(X = r) = nC_r\left(\frac 14\right)^r \left(\frac 34\right)^{n - r}\)
r = 0, 1, 2,.., n
It is given that
\(P(X \ge 1) > \frac 23\)
\(1 - P(X = 0) > \frac 23\)
\(1 - n_{C_0} \left(\frac 14\right)^0\left(\frac 34\right)^n > \frac 23\)
\(1-\left(\frac 34\right)^n > \frac 23\)
\(\left(\frac 34\right)^n < \frac 13\)
⇒ n = 4, 5, 6,....
Hence, the man must fire at least 4 times.