Given,
ang = 1.5, fa = 20 cm, anl = 1.75, fl = ?
Now,
\(\frac{1}{f_a}=(_an_g -1)\,\left(\frac{1}{R_1}-\frac{1}{R_2}\right)\)
\(\frac{1}{20}=(1.5 -1)\,\left(\frac{1}{R_1}-\frac{1}{R_2}\right)\,...(1)\)
When lens is immersed in liquid
\(\frac{1}{f_l}=(_ln_g)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)\)
\(\frac{1}{f_l}=\left(\frac{_an_g}{_an_l}-1\right)\,\left(\frac{1}{R_1}-\frac{1}{R_2}\right),\) \(\left[\because\,_ln_g=\frac{_an_g}{_an_l}\right]\)
\(\frac{1}{f_l}=\left(\frac{1.5}{1.75}-1\right)\,\left(\frac{1}{R_1}-\frac{1}{R_2}\right)...(2)\)
Dividing equation (1) by (2), we get
\(\frac{f_l}{20}=\frac{0.5\times175}{-25}\)
\(f_l =\frac{-20\times0.5\times175}{25}=-70\, cm\)