Correct option is (a) \( \tan^{-1}(y) + \log x+ \frac{(\log x)^2}2 = C\)
\((1 + y^2) (1+ \log x)dx + xdy = 0\)
\(\therefore (1 + y^2) (1 + \log x)dx = - xdy\)
\(\frac{(1 + \log x)}{x} dx = -\frac 1{1 + y^2}dy\)
Integrating both sides,
\(\therefore \int \left(\frac{1 + \log x}x\right)dx = - \int \frac 1{1 + y^2} dy\)
\(\therefore \int \frac 1 x dx + \int \frac{\log x}x dx = - \int \frac 1{1 + y^2} dy\)
Put log x = t
Differentiating wrt 'x'
\(\frac 1 x dx = dt\)
\(\therefore \int \frac 1x x + \int tdt = - \int \frac 1{1 + y^2}dy\)
\(\log x+ \frac{t^2}2 = - \tan^{-1}(y) + C\)
\(\log x+ \frac{(\log x)^2}2 = - \tan^{-1}(y) + C\)
\( \tan^{-1}(y) + \log x+ \frac{(\log x)^2}2 = C\)