L.H.S. = \(\begin{vmatrix}pa&qb&rc\\ qc&ra&pb\\ rb&pc&qa\end{vmatrix}\)

= pa(qra2 – p2bc) – qb(q2ca – prb2) + rc(pqc2– r2ab)
= pqra3 – p3abc – q3abc + pqrb3 + pqrc3 – r3abc
= a3pqr – p3abc – q3abc + b3pqr + c3pqr – r3abc
= pqr(a3 + b3 + c3) – abc(p3 + q3 + r3)
= pqr(a3 + b3 + c3) – abc(3pqr)
(∵ p + q+ r = 0 ⇒ p3 + q3 + r3 = 3pqr)
= pqr[a3 + b3 + c3 – 3abc] …(i)
R.H.S. =pqr \(\begin{vmatrix}a&b&c\\c&a&b\\b&c&a\end{vmatrix}\)
= pqr[a(a2– bc) – b(ca – b2) + c(c2– ab)]
= pqr[a – abc – abc + b3 + c3 – abc]
= pqr[a3 + b3 + c3 – 3abc]
समीकरण (i) व (i) से,
pqr = \(\begin{vmatrix}a&b&c\\c&a&b\\b&c&a\end{vmatrix}\)
इति सिद्धम्।