You can perform Linear Regression in Python using libraries like NumPy and scikit-learn.
Here's an example:
import numpy as np
from sklearn.linear_model import LinearRegression
# Sample data
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # Independent variable
y = np.array([2, 4, 5, 4, 5]) # Dependent variable
# Create a LinearRegression model
model = LinearRegression()
# Fit the model to the data
model.fit(X, y)
# Predict using the model
new_X = np.array([6]).reshape(-1, 1)
predicted_y = model.predict(new_X)
print(predicted_y) # Output: [6.2]