By chain rule, we have
log(sec(x))' = \(\frac 1{\sec(x)}\)·sec(x)tan(x) = tan(x)
log(sec(x))(2) = tan'(x) = sec2(x)
log(sec(x))(3) (sec2(x))' = 2sec(x) (sec(x))' = 2sec2(x)tan(x)
log(sec(x))(4) = (2sec2(x) tan(x))' = 2(sec4(x) + 2sec2(x) tan2(x))
log(sec(x))(5) = (2(sec4(x) + 2sec2(x)tan2(x)) = 8sec2(x) tan(x) (2sec2(x) + tan2(x))
log(sec(x))(6) = 8(2sec6(x) + 11sec4(x)tan2(x) + 2sec2(x)tan4(x))
We need to evaluate the derivatives in zero in order to get the maclaurin series.
Once sec(0) = 1 and tan(0) = 0, we have
log (sec(0)) = log(1) = 0
log(sec(0))' = tan(0) = 0
log(sec(0))(2) = sec2(0) = 1
log(sec(0))(3) = 2sec2(0) tan(0) = 0
log(sec(0))(4) = 2(sec4(0) + 2sec2(0) tan2(0)) = 2
log (sec(0))(5) = 8sec2(0) tan (0) (2sec2(0) + tan2(0)) = 0
log(sec(0))(6) = 8(2sec6(0) + 11sec4(0) tan2(0) + 2sec2(0) tan4(0)) = 16
Hence, the maclaurin series is given by
\(M(x) = f(0) + f'(0)x + \frac{f^{(2)}(0)}2 x^2 + \frac{f^{(3)}(0)}6 x^3 + \frac{f^{(4)}(0)}{24} x^4 + \frac{f^{(5)}(0)}{120} x^5 + \frac{f^{(6)}(0)}{720} x^6\)
⇒ \(M(x) = \frac 12x^2 + \frac 1{12}x^4 + \frac 1{45}x^6\)