Using the definition of potential energy function,
\(U(r) = U(r_0) = - \int \limits_{r_0}^rFdr\)
\(= - k \int \limits_{r_0}^r \frac{dr}{r^2} \)
\(= k \left[\frac 1r\right]_{r_0}^r\)
\(= k[\frac 1 r - \frac 1{r_0}]\)
Since at r = r0, U(r0) = 0, therefore,
\(U(r) = \frac kr - \frac k{r_0}\)