(a)

At the 1st surface, using Snell's law
sin θ = n sin r1
sin r1 = sin θ/n
r2 = A - r1 = 90 - r1
At the second interface,
sin r2 = sin 90/n
sin r2 = 1/n
sin (90 - r1) = 1/n
cos r1 = 1/n
Squaring both sides
cos2r1 = 1/n2
1 - sin2r1 = 1/n2
1 - (sin2θ/n2) = 1/n2
Solving, n = √(1+sin2θ)
(b) For an equilateral prism A = 60°
Using Snell's law at the first surface,
sin i = n sin r
At minimum deviation r = A/2 = 60/2 = 30°
sin i = n sin(30)
sin i = n(1/2)
i = sin-1 (n/2)