Correct option is (C) 14
\(\cos\theta + \sec\theta = 4\)
Squaring both sides
\((\cos\theta + \sec\theta)^2 = (4)^2\)
\(\cos^2\theta + \sec^2 \theta + 2\cos \theta \sec \theta = 16\)
\(\cos^2\theta + \sec^2 \theta + 2\cos \theta \times \frac 1{\cos \theta}= 16\) \(\left[ \because \sec \theta = \frac 1{\cos \theta}\right]\)
\(\cos^2\theta + \sec^2 \theta = 16 - 2\)
\(\cos^2\theta + \sec^2 \theta = 14\)