Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
106 views
in Mathematics by (5.7k points)
edited by

Define Imaginary numbers. Imaginary Number rules. Operations on Imaginary numbers.

Please log in or register to answer this question.

1 Answer

0 votes
by (5.7k points)

Imaginary numbers are the numbers when squared it gives the negative result. In other words, imaginary numbers are defined as the square root of the negative numbers where it does not have a definite value. It is mostly written in the form of real numbers multiplied by the imaginary unit called “i”.

Let us take an example: 5i

Where

5 is the real number and i is the imaginary unit.

When this number 5i is squared, we will get the negative result as -25. Because the value of i 2 is -1. This means that the √-1 = i. 

The notation “i” is the foundation for all imaginary numbers. The solution written by using this imaginary number in the form a+bi is known as a complex number. In other words, a complex number is one which includes both real and imaginary numbers.

Imaginary Number Rules:

Consider an example, a+bi is a complex number. For a +bi, the conjugate pair is a-bi. The complex roots exist in pairs so that when multiplied, it becomes equations with real coefficients.

Consider the pure quadratic equation: x 2 = a, where ‘a’ is a known value. Its solution may be presented as x = √a. Therefore, the rules for some imaginary numbers are:

  • i = √-1
  • i= -1
  • i= -i
  • i= +1
  • i4n = 1
  • i4n-1= -i

Operations on Imaginary Numbers:

The basic arithmetic operations in Mathematics are addition, subtraction, multiplication, and division. Let us discuss these operations on imaginary numbers:

Let us assume the two complex numbers: a + bi and c + di.

Addition of Numbers Having Imaginary Numbers

When two numbers, a+bi, and c+di are added, then the real parts are separately added and simplified, and then imaginary parts separately added and simplified. Here, the answer is (a+c) + i(b+d).

Subtraction of Numbers Having Imaginary Numbers

When c+di is subtracted from a+bi, the answer is done like in addition. It means, grouping all the real terms separately and imaginary terms separately and doing simplification. Here, (a+bi)-(c+di) = (a-c) +i(b-d).

Multiplication of Numbers Having Imaginary Numbers

Consider (a+bi)(c+di)

It becomes:

(a+bi)(c+di) = (a+bi)c + (a+bi)di

= ac+bci+adi+bdi2

= (ac-bd)+i(bc+ad)

Division of Numbers Having Imaginary Numbers

Consider the division of one imaginary number by another.

(a+bi) / ( c+di)

Multiply both the numerator and denominator by its conjugate pair, and make it real. So, it becomes

(a+bi) / ( c+di) = (a+bi) (c-di) / ( c+di) (c-di) = [(ac+bd)+ i(bc-ad)] / c+d2.

Related questions

0 votes
1 answer
0 votes
1 answer
0 votes
1 answer
0 votes
1 answer
0 votes
1 answer

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...