Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
17.9k views
in Mathematics by (50.1k points)
closed by

Let \(g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)\) and \(f^{\prime \prime}(x)>0\) for all \(\mathrm{x} \in(0,3)\). If g is decreasing in \((0, \alpha)\) and increasing in \((\alpha, 3)\), then \(8 \alpha\) is

(1) 24

(2) 0

(3) 18

(4) 20

1 Answer

+1 vote
by (50.3k points)
selected by
 
Best answer

Correct option is (3) 18

\(g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)\) and \(f^{\prime \prime}(x)>0 \forall x \in(0,3)\)

\(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})\) is increasing function

\(g^{\prime}(x)=3 \times \frac{1}{3} \cdot f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x)\)

\(=\mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)-\mathrm{f}^{\prime}(3-\mathrm{x})\)

If g is decreasing in \((0, \alpha)\)

\(\mathrm{g}^{\prime}(\mathrm{x})<0\)

\(\mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)-\mathrm{f}^{\prime}(3-\mathrm{x})<0\)

\(\mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)<\mathrm{f}^{\prime}(3-\mathrm{x})\)

\(\Rightarrow \frac{\mathrm{x}}{3}<3-\mathrm{x}\)

\(\Rightarrow \mathrm{x}<\frac{9}{4}\)

Therefore \(\alpha=\frac{9}{4}\)

Then \(8 \alpha=8 \times \frac{9}{4}=18\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...