Correct option is (3) 18
\(g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)\) and \(f^{\prime \prime}(x)>0 \forall x \in(0,3)\)
\(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})\) is increasing function
\(g^{\prime}(x)=3 \times \frac{1}{3} \cdot f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x)\)
\(=\mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)-\mathrm{f}^{\prime}(3-\mathrm{x})\)
If g is decreasing in \((0, \alpha)\)
\(\mathrm{g}^{\prime}(\mathrm{x})<0\)
\(\mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)-\mathrm{f}^{\prime}(3-\mathrm{x})<0\)
\(\mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)<\mathrm{f}^{\prime}(3-\mathrm{x})\)
\(\Rightarrow \frac{\mathrm{x}}{3}<3-\mathrm{x}\)
\(\Rightarrow \mathrm{x}<\frac{9}{4}\)
Therefore \(\alpha=\frac{9}{4}\)
Then \(8 \alpha=8 \times \frac{9}{4}=18\)