Correct option is (4) \(\frac{1}{2^{13}}\left(2^{14}-15\right)\)
\(2 \tan ^{2} \theta-5 \sec \theta-1=0\)
\(\Rightarrow 2 \sec ^{2} \theta-5 \sec \theta-3=0\)
\(\Rightarrow(2 \sec \theta+1)(\sec \theta-3)=0\)
\(\Rightarrow \sec \theta=-\frac{1}{2}, 3\)
\(\Rightarrow \cos \theta=-2, \frac{1}{3}\)
\(\Rightarrow \cos \theta=\frac{1}{3}\)
For 7 solutions n = 13
So, \(\sum\limits_{\mathrm{k}=1}^{13} \frac{\mathrm{k}}{2^{\mathrm{k}}}=\mathrm{S}\) (say)
\(\mathrm{S}=\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\ldots .+\frac{13}{2^{13}}\)
\(\frac{1}{2} \mathrm{~S}=\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots .+\frac{12}{2^{13}}+\frac{13}{2^{14}}\)
\(\Rightarrow \frac{S}{2}=\frac{1}{2} \cdot \frac{1-\frac{1}{2^{13}}}{1-\frac{1}{2}}-\frac{13}{2^{14}} \)
\(\Rightarrow S=2 \cdot\left(\frac{2^{13}-1}{2^{13}}\right)-\frac{13}{2^{13}}\)