Correct answer: 2
\(f(x)=\int_{0}^{x} g(t) \ln \left(\frac{1-t}{1+t}\right) d t\)
\(f(-x)=\int_{0}^{-x} g(t) \ln \left(\frac{1-t}{1+t}\right) d t\)
\(f(-x)=-\int_{0}^{x} g(-y) \ln \left(\frac{1+y}{1-y}\right) d y\)
\(=-\int_{0}^{x} g(y) \ln \left(\frac{1-y}{1+y}\right) d y\) (g is odd)
\({f}(-{x})=-{f}({x}) \Rightarrow {f}\) is also odd
Now,
\(I=\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^{2} \cos x}{1+e^{x}}\right) d x\quad ....(1)\)
\(I=\int_{-\pi / 2}^{\pi / 2}\left(f(-x)+\frac{x^{2} e^{x} \cos x}{1+e^{x}}\right) d x\quad ....(2)\)
\(2 I=\int_{-\pi / 2}^{\pi / 2} x^{2} \cos x d x=2 \int_{0}^{\pi / 2} x^{2} \cos x d x\)
\( I=\left(x^{2} \sin x\right)_{0}^{\pi / 2}-\int_{0}^{\pi / 2} 2 x \sin x d x\)
\( =\frac{\pi^{2}}{4}-2\left(-x \cos x+\int \cos x d x\right)_{0}^{\pi / 2}\)
\(=\frac{\pi^{2}}{4}-2(0+1)\)
\(=\frac{\pi^{2}}{4}-2 \)
\(\Rightarrow\left(\frac{\pi}{2}\right)^{2}-2\)
\( \therefore \alpha=2\)