Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
5.2k views
in Mathematics by (50.3k points)
closed by

If \(\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3} \), where \(a, b, c\) are rational numbers, then \(2a + 3b-4c\) is equal to :

(1) 4

(2) 10

(3) 7

(4) 8

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

Correct option is (4) 8

\(\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=\int_{0}^{1} \frac{\sqrt{3+x}-\sqrt{1+x}}{(3+x)-(1+x)} d x\)

\(\frac{1}{2}\left[\int_{0}^{1} \sqrt{3+x} d x-\int_{0}^{1}(\sqrt{1+x}) \mathrm{dx}\right]\)

\(\frac{1}{2}\left[2 \frac{(3+x)^{\frac{3}{2}}}{3}-\frac{2(1+x)^{\frac{3}{2}}}{3}\right]_{0}^{1}\)

\(\frac{1}{2}\left[\frac{2}{3}(8-3 \sqrt{3})-\frac{2}{3}\left(2^{\frac{3}{2}}-1\right)\right]\)

\(\frac{1}{3}[8-3 \sqrt{3}-2 \sqrt{2}+1]\)

\(=3-\sqrt{3}-\frac{2}{3} \sqrt{2}=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}\)

\(\mathrm{a}=3, \mathrm{~b}=-\frac{2}{3}, \mathrm{c}=-1\)

\(2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c}=6-2+4=8\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...