Correct option is (4) 1
\(f\left(3^{-}\right)=\frac{a}{b} \frac{\left(7 x-12-x^{2}\right)}{\left|x^{2}-7 x+12\right|} \) (for f(x) to be cont.)
\(\Rightarrow \mathrm{f}\left(3^{-}\right)=\frac{-\mathrm{a}}{\mathrm{b}} \frac{(\mathrm{x}-3)(\mathrm{x}-4)}{(\mathrm{x}-3)(\mathrm{x}-4)} ; \mathrm{x}<3 \Rightarrow \frac{-\mathrm{a}}{\mathrm{b}}\)
Hence \(\mathrm{f}\left(3^{-}\right)=\frac{-\mathrm{a}}{\mathrm{b}}\)
Then \(f\left(3^{+}\right) = 2^{\lim\limits_{x \rightarrow 3^{+}}\left(\frac{\sin (x-3)}{x-3}\right)}=2\) and \(f(3)=b\)
Hence \(f(3)=f\left(3^{+}\right)=f\left(3^{-}\right)\)
\(\Rightarrow \mathrm{b}=2=-\frac{\mathrm{a}}{\mathrm{b}}\)
\(\mathrm{b}=2, \mathrm{a}=-4\)
Hence only 1 ordered pair \((-4,2)\).