Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
11.4k views
in Mathematics by (50.3k points)
closed by

If \(a=\lim\limits _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}}\) and \(b=\lim\limits _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}\), then the value of \(a b^{3}\) is :

(1) 36

(2) 32

(3) 25

(4) 30

1 Answer

+2 votes
by (50.1k points)
selected by
 
Best answer

Correct option is (2) 32

\(\mathrm{a}=\lim\limits _{\mathrm{x} \rightarrow 0} \frac{\sqrt{1+\sqrt{1+\mathrm{x}^{4}}}-\sqrt{2}}{\mathrm{x}^{4}}\)

\(=\lim \limits_{x \rightarrow 0} \frac{\sqrt{1+x^{4}}-1}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)}\)

\(=\lim \limits_{x \rightarrow 0} \frac{x^{4}}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)\left(\sqrt{1+x^{4}}+1\right)}\)

Applying limit \(\mathrm{a}=\frac{1}{4 \sqrt{2}}\)

\(b=\lim\limits _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}\)

\(=\lim\limits _{x \rightarrow 0} \frac{\left(1-\cos ^{2} x\right)(\sqrt{2}+\sqrt{1+\cos x})}{2-(1+\cos x)}\)

\(b=\lim\limits _{x \rightarrow 0}(1+\cos x)(\sqrt{2}+\sqrt{1+\cos x})\)

Applying limits \(b=2(\sqrt{2}+\sqrt{2})=4 \sqrt{2}\)

Now, \(\mathrm{ab}^{3}=\frac{1}{4 \sqrt{2}} \times(4 \sqrt{2})^{3}=32\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...