Correct option is (2) 32
\(\mathrm{a}=\lim\limits _{\mathrm{x} \rightarrow 0} \frac{\sqrt{1+\sqrt{1+\mathrm{x}^{4}}}-\sqrt{2}}{\mathrm{x}^{4}}\)
\(=\lim \limits_{x \rightarrow 0} \frac{\sqrt{1+x^{4}}-1}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)}\)
\(=\lim \limits_{x \rightarrow 0} \frac{x^{4}}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)\left(\sqrt{1+x^{4}}+1\right)}\)
Applying limit \(\mathrm{a}=\frac{1}{4 \sqrt{2}}\)
\(b=\lim\limits _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}\)
\(=\lim\limits _{x \rightarrow 0} \frac{\left(1-\cos ^{2} x\right)(\sqrt{2}+\sqrt{1+\cos x})}{2-(1+\cos x)}\)
\(b=\lim\limits _{x \rightarrow 0}(1+\cos x)(\sqrt{2}+\sqrt{1+\cos x})\)
Applying limits \(b=2(\sqrt{2}+\sqrt{2})=4 \sqrt{2}\)
Now, \(\mathrm{ab}^{3}=\frac{1}{4 \sqrt{2}} \times(4 \sqrt{2})^{3}=32\)