Correct option is (1) Reflexive and symmetric but not transitive
\((\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{a}, \mathrm{b})\) as \(\mathrm{ab}-\mathrm{ab}=0\)
Therefore reflexive
Let \((a, b) R(c, d) \Rightarrow a d-b c\) is divisible by 5
\(\Rightarrow \mathrm{bc}-\mathrm{ad}\) is divisible by \(5 \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})\)
Therefore symmetric
Relation not transitive as \((3,1) \mathrm{R}(10,5)\) and \((10,5) \mathrm{R}(1,1)\) but \((3,1)\) is not related to \((1,1)\).