Correct option is (4) \(A^{3}+A^{T}\)
\(\mathrm{AA}^{\mathrm{T}}=\mathrm{I}=\mathrm{A}^{\mathrm{T}} \mathrm{A}\)
On solving given expression, we get
\(\frac{1}{2} \mathrm{~A}\left[\mathrm{~A}^{2}+\left(\mathrm{A}^{\mathrm{T}}\right)^{2}+2 \mathrm{AA}+\mathrm{A}^{2}+\left(\mathrm{A}^{\mathrm{T}}\right)^{2}-2 \mathrm{AA} \mathrm{A}^{\mathrm{T}}\right]\)
\(=\mathrm{A}\left[\mathrm{A}^{2}+\left(\mathrm{A}^{\mathrm{T}}\right)^{2}\right]\)
\(=\mathrm{A}^{3}+\mathrm{A}^{\mathrm{T}}\)