Correct option is (1) 3
Differential equation:-
\(x \cos \frac{y}{x} \frac{d y}{d x}=y \cos \frac{y}{x}+x \)
\(\cos \frac{y}{x}\left[x \frac{d y}{d x}-y\right]=x\)
Divide both sides by \(\mathrm{x}^2\)
\(\cos \frac{y}{x}\left(\frac{x \frac{d y}{d x}-y}{x^2}\right)=\frac{1}{x}\)
Let \(\frac{y}{x}=t\)
\( \cos \mathrm{t}\left(\frac{\mathrm{dt}}{\mathrm{dx}}\right)=\frac{1}{\mathrm{x}} \)
\(\cos \mathrm{dt}=\frac{1}{\mathrm{x}} \mathrm{dx}\)
Integrating both sides
\(\sin \mathrm{t}=\ln |\mathrm{x}|+\mathrm{c}\)
\(\sin \frac{\mathrm{y}}{\mathrm{x}}=\ln |\mathrm{x}|+\mathrm{c}\)
Using \(\mathrm{y}(1)=\frac{\pi}{3}\), we get
\(\mathrm{c}=\frac{\sqrt{3}}{2}\)
So, \(\alpha=\sqrt{3} \)
\(\Rightarrow \alpha^2=3\)