Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
6.6k views
in Mathematics by (50.3k points)
closed by

If \(\int \frac{\sin ^{\frac{3}{2}} \mathrm{x}+\cos ^{\frac{3}{2}} \mathrm{x}}{\sqrt{\sin ^{3} x \cos ^{3} \mathrm{x}(\mathrm{sin}(\mathrm{x}-\theta)}} \mathrm{dx}=\mathrm{A} \sqrt{\cos \theta \tan x-\sin \theta}+\mathrm{B} \sqrt{\cos \theta-\sin \theta \cot \mathrm{x}}+\mathrm{C}\), where \(\mathrm{C}\) is the integration constant, then \(\mathrm{AB}\) is equal to

(1) \(4 \operatorname{cosec}(2 \theta)\)

(2) \(4 \sec \theta\)

(3) \(2 \sec \theta\)

(4) \(8 \operatorname{cosec}(2 \theta)\)

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

Correct option is (4) \(8 \operatorname{cosec}(2 \theta)\)

\(\int \frac{\sin ^{\frac{3}{2}} \mathrm{x}+\cos ^{\frac{3}{2}} \mathrm{x}}{\sqrt{\sin ^{3} \mathrm{x} \cos ^{3} \mathrm{x} \sin (\mathrm{x}-\theta)}} \mathrm{dx}\)

\(I=\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^{3} x \cos ^{3} x(\sin x \cos \theta-\cos x \sin \theta)}} d x\)

\(=\int \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x \cos ^{2} x \sqrt{\tan x \cos \theta-\sin \theta}} d x+\int \frac{\cos ^{\frac{3}{2}} x}{\sin ^{2} x \cos ^{\frac{3}{2}} x \sqrt{\cos \theta-\cot x \sin \theta}} d x\)

\(=\int \frac{\sec ^{2} x}{\sqrt{\tan x \cos \theta-\sin \theta}} d x+\int \frac{\operatorname{cosec}^{2} x}{\sqrt{\cos \theta-\cot x \sin \theta}} d x\)

\(\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\quad....{\{\text{Let}\}}\)

For \(\mathrm{I}_{1},\) let \(\tan \mathrm{x} \cos \theta-\sin \theta=\mathrm{t}^{2}\)

\(\sec ^{2} x d x=\frac{2 t d t}{\cos \theta}\)

For \( \mathrm{I}_{2}\), let \(\cos \theta-\cot \mathrm{x} \sin \theta=\mathrm{z}^{2}\)

\(\operatorname{cosec}^{2} x d x=\frac{2 z d z}{\sin \theta}\)

\(\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\)

\(=\int \frac{2 t d t}{\cos \theta t}+\int \frac{2 z d z}{\sin \theta z}\)

\(=\frac{2 \mathrm{t}}{\cos \theta}+\frac{2 \mathrm{z}}{\sin \theta}\)

\(=2 \sec \theta \sqrt{\tan x \cos \theta-\sin \theta}+2 \operatorname{cosec} \theta \sqrt{\cos \theta-\cot x \sin \theta}\)

Comparing

\(\mathrm{AB}=8 \operatorname{cosec} 2 \theta\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...