Correct option is (1) 0
\(f(x) = \left|\begin{array}{ccc}2 \cos ^{4} x & 2 \sin ^{4} x & 3+\sin ^{2} 2 x \\ 3+2 \cos ^{4} x & 2 \sin ^{4} x & \sin ^{2} 2 x \\ 2 \cos ^{4} x & 3+2 \sin ^{2} 4 x & \sin ^{2} 2 x\end{array}\right|\)
\(f'(0) = 0 + 0 + 0 = 0\)
\(f'(0) = 0\)
\(\frac 15.f'(0) = 0\)