Correct answer: 15
\(f(x)=\left\{\begin{array}{cc}\frac{1}{x}; & x \geq 2 \\ a x^{2}+2 b; & -2<x<2\\-\frac1x; &x \le -2\end{array}\right.\)
Continuous at \(\mathrm{x}=2\)
\( \Rightarrow \frac{1}{2}=\frac{\mathrm{a}}{4}+2 \mathrm{~b}\)
Continuous at \(\mathrm{x}=-2 \)
\( \Rightarrow \frac{1}{2}=\frac{\mathrm{a}}{4}+2 \mathrm{b}\)
Since, it is differentiable at \(\mathrm{x}=2\)
\(-\frac{1}{x^{2}}=2 \mathrm{ax}\)
Differentiable at \(\mathrm{x}=2 \)
\(\Rightarrow \frac{-1}{4}=4 \mathrm{a} \Rightarrow \mathrm{a}=\frac{-1}{16}, \mathrm{~b}=\frac{3}{8}\)
\(48(a + b) = 48\left(\frac{-1}{16} + \frac 38 \right) = 15\)