Let \(\mathrm{f}: \mathbb{R}-\{0\} \rightarrow \mathbb{R}\) be a function satisfying \(f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}\) for all \(x, y, f(y) \neq 0\). If \(f^{\prime}(1)=2024\), then
(1) \({xf}^{\prime}({x})-2024 {f}({x})=0\)
(2) \(x f^{\prime}(x)+2024 f(x)=0\)
(3) \({xf}^{\prime}({x})+{f}({x})=2024\)
(4) \(x f^{\prime}(x)-2023 f(x)=0\)