Correct option is (4) 32
\(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{0}\)
\((\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{b}}=\overrightarrow{0}\)
\(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{b}} \Rightarrow \overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{c}}+\lambda \overrightarrow{\mathrm{b}}\)
Now, \(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{a}}=0\) (given)
So, \(\overrightarrow{c} . \overrightarrow{a}+\lambda\overrightarrow{a} \cdot\overrightarrow{b}=0\)
\((3-3-8)+\lambda(12+1-14)=0\)
\(\lambda=-8\)
\(\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{c}}-8 \overrightarrow{\mathrm{b}}\)
\(\overrightarrow{p}=-31 \hat{i}-11 \hat{j}-52 \hat{k}\)
So, \(\overrightarrow{\mathrm{p}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
\(=-31+11+52\)
\(=32\)