Correct answer: 3734
We have III, TT, D, S, R, B, U, O, N
Number of words with selection (a, a, a, b)
\(={ }^{8} \mathrm{C}_{1} \times \frac{4 !}{3 !}=32\)
Number of words with selection (a, a, b, b)
\(=\frac{4 !}{2 ! 2 !}=6\)
Number of words with selection (a, a, b, c)
\(={ }^{2} C_{1} \times{ }^{8} C_{2} \times \frac{4 !}{2 !}=672\)
Number of words with selection (a, b, c, d)
\(={ }^{9} \mathrm{C}_{4} \times 4 !=3024\)
\(\therefore\mathrm { Total }=3024+672+6+32 =3734\)