Correct answer: 5
\(\because f(x)=\frac{4^x}{4^x+2}\)
\(f(1-x)=\frac{4^{1-x}}{4^{1-x}+2} \)
\(f(x)+f(1-x)=1\)
\(\therefore f(a)+f(1-a)=1\)
\(M=\int\limits_{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x\)
\(M=\frac{1}{2} \int\limits_{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x\) (Using elimination of x)
\(M=\frac{N}{2} \Rightarrow 2 M=N \)
\(\alpha M=\beta N\)
\(\alpha = 2\ \& \ \beta= 1\)
\(\alpha ^2+ \beta^2= 4 +1=5\)