Correct option is (3) \(\frac{141}{\sqrt{221}}\)
\(\mathrm{L}_{2}=\frac{\mathrm{x}+4}{3}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-3}{0}\)
\( \therefore \text { S.D }=\frac{\left|\begin{array}{ccc}
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
2 & -3 & 2 \\
3 & 2 & 0
\end{array}\right|}{\left|\overrightarrow{\mathrm{n}_{1}} \times \overrightarrow{\mathrm{n}_{2}}\right|} \)
\(=\frac{\left|\begin{array}{ccc}
5 & -5 & -7 \\
2 & -3 & 2 \\
3 & 2 & 0
\end{array}\right|}{\left|\overrightarrow{\mathrm{n}_{1}} \times \overrightarrow{\mathrm{n}_{2}}\right|} \)
\(=\frac{141}{|-4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}|}\)
\(=\frac{141}{\sqrt{16+36+169}}\)
\(=\frac{141}{\sqrt{221}}\)