Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
28.3k views
in Mathematics by (50.3k points)
closed by

The shortest distance between lines \(\mathrm{L}_{1}\) and \(\mathrm{L}_{2}\), where \(\mathrm{L}_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{-3}=\frac{\mathrm{z}+4}{2}\) and \(\mathrm{L}_{2}\) is the line passing through the points \(A(-4,4,3) \cdot B(-1,6,3)\) and perpendicular to the line \(\frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}\), is

(1) \(\frac{121}{\sqrt{221}}\)

(2) \(\frac{24}{\sqrt{117}}\)

(3) \(\frac{141}{\sqrt{221}}\)

(4) \(\frac{42}{\sqrt{117}}\)

1 Answer

+2 votes
by (50.1k points)
selected by
 
Best answer

Correct option is (3) \(\frac{141}{\sqrt{221}}\)

\(\mathrm{L}_{2}=\frac{\mathrm{x}+4}{3}=\frac{\mathrm{y}-4}{2}=\frac{\mathrm{z}-3}{0}\)

\( \therefore \text { S.D }=\frac{\left|\begin{array}{ccc} \mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}\right|}{\left|\overrightarrow{\mathrm{n}_{1}} \times \overrightarrow{\mathrm{n}_{2}}\right|} \)

\(=\frac{\left|\begin{array}{ccc} 5 & -5 & -7 \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}\right|}{\left|\overrightarrow{\mathrm{n}_{1}} \times \overrightarrow{\mathrm{n}_{2}}\right|} \)

\(=\frac{141}{|-4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}|}\)

\(=\frac{141}{\sqrt{16+36+169}}\)

\(=\frac{141}{\sqrt{221}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...