Correct answer: 38
\((\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}\)
\((5 \hat{i}+\hat{j}+4 \hat{k}) \times \vec{c}=2(7 \hat{i}-7 \hat{j}-7 \hat{k})+24 \hat{j}-6 \hat{k}\)
\(\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 5 & 1 & 4 \\ x & y & z\end{array}\right|=14 \hat{i}+10 \hat{j}-20 \hat{k}\)
\(\Rightarrow \hat{\mathrm{i}}(\mathrm{z}-4 \mathrm{y})-\hat{\mathrm{j}}(5 \mathrm{z}-4 \mathrm{x})+\hat{\mathrm{k}}(5 \mathrm{y}-\mathrm{x})=14 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}-20 \hat{\mathrm{k}}\)
\(z-4 y=14,4 x-5 z=10,5 y-x=-20\)
\((\mathrm{a}-\mathrm{b}+\mathrm{i}) \cdot \vec{\mathrm{c}}=-3\)
\((2 \hat{i}+3 \hat{j}-2 \hat{k}) \cdot \vec{c}=-3\)
\(2 \mathrm{x}+3 \mathrm{y}-2 \mathrm{z}=-3\)
\(\therefore \mathrm{x}=5, \mathrm{y}=-3, \mathrm{z}=2\)
\(|\vec{\mathrm{c}}|^{2}=25+9+4=38\)