Correct answer: 81
\(\lim\limits _{x \rightarrow 0} \frac{ ax^{2}\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+....\right)-b\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}- ....\right) +c x\left(1-x+\frac{x^{2}}{x !}-\frac{x^{3}}{3 !}+....\right)}{x^{3} \cdot \frac{\sin x}{x}}\)
\( =\lim\limits_{x \rightarrow \infty} \frac{(c-b) x+\left(\frac{b}{2}-c+a\right) x^{2}+\left(a-\frac{b}{3}+\frac{c}{2}\right) x^{3}+....}{x^{3}}=1\)
\( \mathrm{c}-\mathrm{b}=0, \quad \frac{\mathrm{b}}{2}-\mathrm{c}+\mathrm{a}=0\)
\( a-\frac{b}{3}+\frac{c}{2}=1 \quad a=\frac{3}{4} \quad b=c=\frac{3}{2}\)
\(a^{2}+b^{2}+c^{2}=\frac{9}{16}+\frac{9}{4}+\frac{9}{4}\)
\(16\left(a^{2}+b^{2}+c^{2}\right)=81\)