Correct option is (4) 2
Let \(Z=x+ iy\)
Then \((\mathrm{x}-1)^{2}+\mathrm{y}^{2}=1 \quad\quad ....(1)\)
\(\&\ (\sqrt{2}-1)(2 x)-i(2 i y)=2 \sqrt{2}\)
\( \Rightarrow(\sqrt{2}-1) x+y=\sqrt{2}\quad\quad ....(2)\)
Solving (1) & (2) we get
Either \(\mathrm{x}=1\ or \ x=\frac{1}{2-\sqrt{2}} \quad\quad ....(3)\)
On solving (3) with (2) we get
For \(\mathrm{x}=1 \Rightarrow \mathrm{y}=1 \Rightarrow \mathrm{Z}_{2}=1+\mathrm{i}\)
& for
\(x=\frac{1}{2-\sqrt{2}} \Rightarrow y=\sqrt{2}-\frac{1}{\sqrt{2}} \Rightarrow Z_{1}=\left(1+\frac{1}{\sqrt{2}}\right)+\frac{i}{\sqrt{2}}\)
Now
\(\left|\sqrt{2} z_{1}-z_{2}\right|^{2}\)
\(=\left|\left(\frac{1}{\sqrt{2}}+1\right) \sqrt{2}+i-(1+i)\right|^{2}\)
\(=(\sqrt{2})^{2}\)
\(=2\)