Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+2 votes
10.8k views
in Mathematics by (50.3k points)
closed by

If \(\int\limits_{0}^{\frac{\pi}{3}} \cos ^{4} x d x=a \pi+b \sqrt{3}\), where \(a \) and \(b\) are rational numbers, then \(9 a+8 b\) is equal to :

(1) 2

(2) 1

(3) 3

(4) \(\frac{3}{2}\)

1 Answer

+2 votes
by (50.1k points)
selected by
 
Best answer

Correct option is (1) 2

\(\int\limits_{0}^{\pi / 3} \cos ^{4} x d x\)

\(=\int\limits_{0}^{\pi / 3}\left(\frac{1+\cos 2 x}{2}\right)^{2} d x\)

\(=\frac{1}{4} \int\limits_{0}^{\pi / 3}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) d x\)

\(=\frac{1}{4}\left[\int\limits_{0}^{\pi / 3} {dx}+2 \int\limits_{0}^{\pi / 3} \cos 2 {xdx}+\int\limits_{0}^{\pi / 3} \frac{1+\cos 4 {x}}{2} {dx}\right]\)

\(=\frac{1}{4}\left[\frac{\pi}{3}+(\sin 2 x)_{0}^{\pi / 3}+\frac{1}{2}\left(\frac{\pi}{3}\right)+\frac{1}{8}(\sin 4 x)_{0}^{\pi / 3}\right]\)

\(=\frac{1}{4}\left[\frac{\pi}{3}+(\sin 2 x)_{0}^{\pi / 3}+\frac{1}{2}\left(\frac{\pi}{3}\right)+\frac{1}{8}(\sin 4 x)_{0}^{\pi / 3}\right]\)

\(=\frac{1}{4}\left[\frac{\pi}{2}+\frac{\sqrt{3}}{2}+\frac{1}{8} \times\left(-\frac{\sqrt{3}}{2}\right)\right]\)

\(=\frac{\pi}{2}+\frac{7 \sqrt{3}}{64}\)

\(\therefore \mathrm{a}=\frac{1}{8} ; \mathrm{b}=\frac{7}{64}\)

\(\therefore 9 \mathrm{a}+8 \mathrm{~b}=\frac{9}{8}+\frac{7}{8}=2\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...