Correct option is (3) 150
\(f(\mathrm{x})=\frac{\sqrt{\mathrm{x}^{2}-25}}{4-\mathrm{x}^{2}}+\log _{10}\left(\mathrm{x}^{2}+2 \mathrm{x}-15\right)\)
Domain: \(\mathrm{x}^{2}-25 \geq 0 \Rightarrow \mathrm{x} \in(-\infty,-5] \cup[5, \infty)\)
\(4-\mathrm{x}^{2} \neq 0 \Rightarrow \mathrm{x} \neq\{-2,2\}\)
\(\mathrm{x}^{2}+2 \mathrm{x}-15>0 \Rightarrow(\mathrm{x}+5)(\mathrm{x}-3)>0\)
\(\Rightarrow \mathrm{x} \in(-\infty,-5) \cup(3, \infty)\)
\(\therefore \mathrm{x} \in(-\infty,-5) \cup[5, \infty)\)
\(\alpha=-5 ; \beta=5\)
\(\therefore \alpha^{2}+\beta^{3}=150\)