Correct answer: 38
\(\overrightarrow{\mathrm a}=\hat{\mathrm i}+\hat{\mathrm j}+\mathrm k\)
\(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+2 \mathrm{k}\)
\(\overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \mathrm{k}\)
\(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}\)
\((\overrightarrow{\mathrm b}-\overrightarrow{\mathrm c}) \times \overrightarrow{\mathrm a}=0\)
\(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\alpha}\)
\(\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}+\lambda \overrightarrow{\alpha}\)
\(-\hat{\mathrm i}-8 \hat{\mathrm j}+2 \mathrm k=\left(4 \hat{\mathrm i}+\mathrm c_{2} \hat{\mathrm j}+\mathrm c_{3} \mathrm k\right)+\lambda(\hat{\mathrm i}+\hat{\mathrm j}+\mathrm k)\)
\(\lambda+4=-1 \Rightarrow \lambda=-5\)
\(\lambda+\mathrm{c}_{2}=-8 \Rightarrow \mathrm{c}_{2}=-3\)
\(\lambda+\mathrm c_{3}=2 \Rightarrow \mathrm c_{3}=7\)
\(\overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \mathrm{k}\)
\(\cos \theta=\frac{12-12+7}{\sqrt{26} \cdot \sqrt{74}}=\frac{7}{\sqrt{26} \cdot \sqrt{74}}=\frac{7}{2 \sqrt{481}}\)
\(\tan ^{2} \theta=\frac{625 \times 3}{49}\)
\(\left[\tan ^{2} \theta\right]=38\)