Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
232 views
in Factorization by (210 points)
(i) \( x^{2}-8 x+16 \) (ii) \( y^{2}+20 y+100 \) (iii) \( 36 m^{2}+60 m+25 \) (iv) \( 64 x^{2}-112 x y+49 y^{2} \) (v) \( a^{2}+6 a b+9 b^{2}-c^{2} \)

Please log in or register to answer this question.

2 Answers

0 votes
by (17.0k points)

varsha6004, hello

(i) (x-4)2

(ii) (y+10)2

(iii) (6m+5)2

(iv) (8x-7y)2

(v) (a+3b-c)(a+3b+c)

Please let me know if this helps.

+1 vote
by (50.3k points)

(i) x2 − 8x − 16 = 0

⇒ x2 − 4x − 4x + 16 = 0

⇒ x(x − 4) − 4(x − 4) = 0

⇒ (x − 4) (x − 4) = 0

when x − 4 = 0 then x = 4

or x − 4 = 0 then x = 4

Hence, x = 4, 4 are required roots of given equation.

(ii) y2 + 20y + 100

= y2 + (2 × (10))y + (10 × 10)

= y2 + (2 × 10 × y) + 102

This is of the form of identity

a2 + 2ab + b2 = (a + b)2

y2 + (2 × 10 × y) + 102 = (y + 10)2

y2 + 20y + 100 = (y + 10)2

y2 + 20y + 100 = (y + 10)(y + 10)

(iii) 36m2 + 60m + 25

= 62m2 + 2 × 6m × 5 + 52

This expression is of the form of identity

a2 + 2ab + b2 = (a + b)2

(6m)2 + (2 × 6m × 5) + 52

= (6m + 5)2

36m2 + 60m + 25 = (6m + 5) (6m + 5)

(iv) 64x2 – 112xy + 49y2

= 82x2 – (2 × 8x × 7y) + 72y2

This expression is of the form of identity

a2 – 2ab + b2 = (a – b)2

(8x)2 – (2 × 8x × 7y) + (7y)2 = (8x – 7y)2

64x2 – 112xy + 49y2 = (8x – 7y)(8x – 7y)

(v) a2 + 6ab + 9b2 – c2

= a2 + 2 × a × 3b + 32b2 – c2

= a2 + (2 × a × 3b) + (3b)2 – c2

This expression is of the form of identity

[a2 + 2ab + b2] – c2 = (a + b)2 – c2

a2 + (2 × a × 3b) + (3b)2 – c2 = (a + 3b)2 – c2

Again this R.H.S is of the form of identity

a2 – b2 = (a + b)(a – b)

(a + 3b)2 – c2 = [(a + 3b) + c][(a + 3b) – c]

a2 + 6ab + 9b2 – c2 = (a + 3b + c)(a + 3b – c)

Related questions

0 votes
1 answer

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...