Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
175 views
in Differential equations by (875 points)
Find the derivative \( f'(x) \).                              \[ f(x) = x^x \cdot (\ln x + 1)^{\frac{1}{x}} \] 

Please log in or register to answer this question.

1 Answer

0 votes
by (65 points)

Given, f(x) = xx·(lnx + 1)1/x

Also, \({d(x^x)\over dx} = x^x(lnx + 1) \) and \({d(({lnx} +1)^{1\over x})\over dx} = \left[{1\over (lnx + 1)} - ln(lnx +1)\right]\left((lnx + 1)^{1\over x}\over x^2\right)\)

Then,

 f'(x) = \(d(f(x))\over dx\)\({d(x^x)\over dx}\cdot (lnx + 1)^{1\over x} + x^x\cdot{d((lnx+1)^{1\over x})\over dx}\)

 = \(x^x(lnx+1)\cdot(lnx+1)^{1\over x} + x^x \cdot\left[{1\over (lnx + 1)} - ln(lnx +1)\right]\left((lnx + 1)^{1\over x}\over x^2\right) \) 

\(\therefore \) f'(x) = \(x^{x-2}\cdot(lnx+1)^{1\over x}\cdot\left[x^2(lnx+1) + {1\over (lnx+1)} - ln(lnx+1)\right] \)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...