Correct answer is: 2736
λmax for Lyman series (E = 2 → E = 1)
\(\frac{1}{912}=R(1)^2\left(\frac{1}{4}-\frac{1}{4}\right)\)
\(\frac{1}{912}=R\times\frac{3}{4}\)
R = \(\frac{4}{912\times3}\)
λmin for Balmer series (E= ∞ → E = 1)
\(\frac{1}{λ}=R(1)\left(\frac{1}{4}\right)\)
\(= \frac{4}{912\times3}\times\frac{1}{4}\)
\(= \frac{1}{912\times3}\)
\(λ=912\times3\)
= 2736 Å