Correct option is (3) 16
\(\left|\operatorname{adj}\left(\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right)\left(2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)\right|=28\)
\(\left|\left(\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right)\left(2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)\right|=24\)
\(\left|\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right|\left|2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right|= \pm 16\)
\(\left(A-2 A^{T}\right)^{T}=A^{T}-2 A\)
\(\left|A-2 A^{T}\right|=\left|A^{T}-2 A\right|\)
\(\Rightarrow\left|\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right|^{2}=16\)
\(\left|\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right|= \pm 4\)
\(\left[\begin{array}{ccc}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]-\left[\begin{array}{ccc}2 & 2 & 0 \\ 4 & 0 & 2 \\ 2 \alpha & 2 & 4\end{array}\right]\)
\(\left|\begin{array}{ccc}-1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2 \alpha & -1 & -2\end{array}\right|\)
\(1+3 \alpha=4\)
\(3 \alpha=3\)
\(\alpha=1\)
\(|A|=\left|\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right|=-1-3=-4\)
\(|A|^{2}=16\)