Correct answer is : 7
\(\quad \Delta \mathrm{E}=13.6\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=1.9 \mathrm{eV}\)
\(\Delta \mathrm{E}=\frac{\mathrm{hc}}{\lambda}\)
\(\lambda=\frac{\mathrm{hc}}{\Delta \mathrm{E}}\)
\(P_{i}=P_{f}\)
\(0=-m v+\frac{h}{\lambda^{\prime}}\)
\(\Rightarrow \mathrm{v}=\frac{\mathrm{h}}{\mathrm{m} \lambda^{\prime}}\)
\(\Delta \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}+\frac{\mathrm{hc}}{\lambda^{\prime}}\)
\(=\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{h}}{\mathrm{m} \lambda^{\prime}}\right)^{2}+\frac{\mathrm{hc}}{\lambda^{\prime}}\)
Now
\(\Delta \mathrm{E}=\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda^{\prime 2}}+\frac{\mathrm{hc}}{\lambda^{\prime}}\)
\(\lambda^{\prime 2} \Delta \mathrm{E}-\mathrm{hc} \lambda^{\prime}-\frac{\mathrm{h}^{2}}{2 \mathrm{~m}}=0\)
\(\lambda^{\prime}=\frac{\mathrm{hc} \pm \sqrt{\mathrm{h}^{2} \mathrm{c}^{2}+\frac{4 \Delta \mathrm{E} \mathrm{h}^{2}}{2 \mathrm{~m}}}}{2 \Delta \mathrm{E}}\)
\(\lambda^{\prime}=\frac{\mathrm{hc} \pm \mathrm{hc} \sqrt{1+\frac{2 \Delta \mathrm{E}}{\mathrm{mc}^{2}}}}{2 \Delta \mathrm{E}}\)
\(\frac{\lambda^{\prime}}{\lambda}=\frac{1+\left(1+\frac{2 \Delta \mathrm{E}}{\mathrm{mc}^{2}}\right)^{\frac{1}{2}}}{2}=\frac{1+1+\frac{\Delta \mathrm{E}}{\mathrm{mc}^{2}}}{2}\)
\(\frac{\lambda^{\prime}}{\lambda}=1+\frac{\Delta \mathrm{E}}{2 \mathrm{mc}^{2}}\)
\(\frac{\lambda^{\prime}-\lambda}{\lambda}=\frac{\Delta \mathrm{E}}{2 \mathrm{mc}^{2}}=\frac{1.9 \times 1.6 \times 10^{-19}}{2 \times 1.67 \times 10^{-27} \times 9 \times 10^{16}}=10^{-9}\)
\(\therefore \%\ change \approx 10^{-7}\)