Correct option is (2) \(\frac \pi 2\)
Let \(I=\int\limits_{-1}^{+1} \frac{\cos \alpha x}{1+3^{x}} d x\)
\(\mathrm{I}=\int\limits_{-1}^{+1} \frac{\cos \alpha \mathrm{x}}{1+3^{-x}} \mathrm{dx}\)
\(\left(\operatorname{using} \int\limits_{a}^{b} f(x) d x=\int\limits_{a}^{b} f(a+b-x) d x\right)\)
Add (I) and (II),
\(2 \mathrm{I}=\int\limits_{-1}^{+1} \cos (\alpha \mathrm{x}) \mathrm{dx}=2 \int\limits_{0}^{1} \cos (\alpha \mathrm{x}) \mathrm{dx}\)
\(\mathrm{I}=\frac{\sin \alpha}{\alpha}=\frac{2}{\pi} \quad\text{(given)}\)
\(\therefore \alpha=\frac{\pi}{2}\)