Correct answer is : 750
Before inserting dielectric capacitance is given \(\mathrm{C}_{0}=12.5 \ \mathrm{pF}\) and charge on the capacitor \(\mathrm{Q}=\mathrm{C}_{0} \mathrm{V}\) After inserting dielectric capacitance will become \(\epsilon_{\mathrm{r}} \mathrm{C}_{0}.\)
Change in potential energy of the capacitor \(=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}\)
\(=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{i}}}-\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{f}}}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{0}}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]\)
\(=\frac{\left(\mathrm{C}_{0} \mathrm{~V}\right)^{2}}{2 \mathrm{C}_{0}}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]=\frac{1}{2} \mathrm{C}_{0} \mathrm{~V}^{2}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]\)
Using \(\mathrm{C}_{0}=12.5 \mathrm{pF}, \mathrm{V}=12 \mathrm{~V}, \epsilon_{\mathrm{r}}=6\)
\(=\frac{1}{2}(12.5) \times 12^{2}\left[1-\frac{1}{6}\right]=\frac{1}{2}(12.5) \times 12^{2} \times \frac{5}{6}\)
\(=750 \ \mathrm{pJ}=750 \times 10^{-12} \mathrm{J}\)