Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.1k views
in Mathematics by (50.3k points)
closed by

Let f be a differentiable function in the interval \((0, \infty)\) such that \(f(1)=1\) and \(\lim\limits_{t \rightarrow x} \frac{t^{2} f(x)-x^{2} f(t)}{t-x}=1\) for each \(x>0\). Then \(2 f(2)+3 f(3)\) is equal to ______.

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

Correct answer: 24

\( \lim\limits _{t \rightarrow x} \frac{t^{2} f(x)-x^{2} f(t)}{t-x}=1\)

\(\lim \limits_{\mathrm{t} \rightarrow \mathrm{x}} \frac{2 \mathrm{t} . \mathrm{f}(\mathrm{x})-\mathrm{x}^{2} \mathrm{f}^{\prime}(\mathrm{x})}{1}=1\)

\(2 \mathrm{x} . \mathrm{f}(\mathrm{x})-\mathrm{x}^{2} \mathrm{f}^{\prime}(\mathrm{x})=1\)

\(\frac{\mathrm{dy}}{\mathrm{dx}}-\frac{2}{\mathrm{x}} \cdot \mathrm{y}=\frac{-1}{\mathrm{x}^{2}}\)

\(\text{I.f.}\) \(=\mathrm{e}^{\int-\frac{2}{x} \mathrm{~d} x}=\frac{1}{\mathrm{x}^{2}}\)

\(\therefore \frac{\mathrm{y}}{\mathrm{x}^{2}}=\int-\frac{1}{\mathrm{x}^{4}} \mathrm{dx}+\mathrm{C}\)

\(\frac{\mathrm{y}}{\mathrm{x}^{2}}=\frac{1}{3 \mathrm{x}^{3}}+\mathrm{C}\)

Put \(f(1)=1\)

\(C= \frac23\)

\(y = \frac 1{3x} + \frac{2x^2}3\)

\(y = \frac{2x^3 + 1}{3x}\)

\(f(2) = \frac {17}6\)

\(f(3) = \frac {55}9\)

\(2 f(2) + 3 f(3) = \frac{17}3 + \frac{55} 3 = \frac{72}3 = 24\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...